Rappel

Les notions d’onde et de particules sont incomplétes. Elles ne sont que des descriptions partielles du
comportement de matiere et lumiere. Les objets régis par les lois de la Physique Quantigue peuvent avoir un
comportement plus complexe.

LU'expérience de Young a deux fentes, menée avec des particules uniques, montre comment une particule
peut manifester un comportement ondulatoire et produire de I'interférence.

Si par contre on essaie d’acquérir de l'information sur sa nature de particule — notamment sa trajectoire,
qgu’on appelle «which-path information» - le comportement ondulatoire disparait et on ne voit plus les
franges d’interférence.

Cette exclusion mutuelle entre comportement ondulatoire et corpusculaire est incontournable. Si on essaie
d’acquérir une «which-path information» partielle, la figure d’interférence disparait partiellement.

Cette expérience de pensée est une illustration tres puissante du principe de complémentarité, énoncé par
Niels Bohr en 1928. Chaque objet quantique peut manifester un comportement ondulatoire ou
corpusculaire, mais les deux ne peuvent jamais étre manifestés simultanément.

Il nous reste a comprendre la nature et la signification de 'onde associée a la matiéere.



Cours 05

Le principe d’incertitude de Heisenberg

Interprétation de la Physique Quantique

La fonction d’onde et |la densité de probabilité

La particule dans un puits avec barrieres impénétrables



Le principe d’'incertitude de Heisenberg

Le principe d’incertitude de Heisenberg est un cas spécial du principe de complémentarité.

'analogie entre 'onde de de Broglie et 'onde électromagnétique nous indique que la forme d’'une onde de
de Broglie avec une longueur d’'onde A fixée, est une onde plaine:
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On remarque que cette onde existe dans tout I'espace! Elle est infiniment étendue!
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On verra plus tard que, selon lI'interprétation orthodoxe de la physique quantique, le module carré de cette
onde exprime la (densité de) probabilité de trouver la particule a I’endroit x.

Une onde de de Broglie donc a une impulsion bien définie, p=h/A, mais la position est totalement
indéterminée, car la probabilité est uniforme dans tout I'espace.



Le principe d'incertitude de Heisenberg

Nous pouvons aussi considérer le cas limite opposé, c.-a-d. une onde qui est infiniment localisée a un endroit
de l'espace. Le seul instrument mathématique possible pour exprimer une telle onde est la fonction delta de
Dirac:

Y(x) x d(x — xp)

La transformée de Fourier de cette fonction généralisée nous dit gu’elle est faite d’une superposition d’ondes
de de Broglie avec toutes les possibles valeurs de la longueur d’onde, et donc de I'impulsion.
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Cet autre cas limite correspond a une position infiniment déterminée et une impulsion totalement
indéterminée.



Le principe d’'incertitude de Heisenberg

Les cas intermédiaires entre ces deux cas limites sont de loin les plus communs dans la réalité qui nous

entoure.
La «fonction d’'onde» d’une particule a la plupart des fois la forme d’un paquet d’onde.
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Le principe d'incertitude de Heisenberg

Le principe d’incertitude de Heisenberg affirme que les étendus des paquets d’onde en x et en p sont liés

par:
AzAp > g

On comprend ce principe de la facon suivante: Il est impossible de connaitre simultanément la position
exacte et la quantité de mouvement exacte d’un objet quantique.

Plus on cherche a connaitre la position avec précision, plus on doit renoncer a l'information sur la quantité de
mouvement, et vice-versa.

Le lien avec le principe de complémentarité vient du fait que la connaissance de la position est une
caractéristiqgue du comportement corpusculaire, alors que la connaissance de l'impulsion (et donc de la
longueur d’onde) est une caractéristique du comportement ondulatoire.

Le principe d’incertitude n’est pas une simple conséquence des limites techniques des instruments de
mesure. Il est plutot une propriété fondamentale des lois de la nature.



Interprétation orthodoxe de la Physigue Quantique

L'interprétation orthodoxe de la physique quantique, connue aussi comme interprétation de Copenhague, a
été introduite pour la premiere fois par Max Born en 1928.

Selon cette interprétation, 'onde associée a une particule est une expression de 'amplitude de probabilité
de trouver la particule a un certain endroit de I'espace. Essayons de comprendre avec une analogie:

Pour le rayonnement électromagnétique classique, la probabilité par unité de volume de trouver un photon a
un endroit de I'espace est proportionnelle au nombre de photons par unité de volume, qui a son tour est
proportionnel a I'intensité du rayonnement, soit au carré du champ
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On conclut que, pour le champ électromagnétique, la densité de probabilité de mesurer un photon a un
endroit de I'espace est proportionnelle au carré du champ qui existe e cet endroit.
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Interprétation orthodoxe de la Physigue Quantique

Par analogie, en suivant I'idée gu’a une particule est associée une onde selon la dualité onde-particule vue
auparavant, on peut poser que la densité de probabilité par unité de volume de trouver une particule a un
endroit de I'espace est proportionnelle au carré de 'amplitude de l'onde associée a la particule.

Il ne faut pas cependant pousser cette analogie trop loin. Il nexiste aucun moyen formel de «démontrer» ce
fait a partir de principes premiers, et on doit I'accepter comme un postulat de la théorie. En particulier:

Londe associée a une particule ne correspond a aucune quantité physique mesurable. Au contraire, le
champ électrique est une quantité physique parfaitement mesurable.

L'onde associée a une particule prend des valeurs complexes. On verra par la suite que ce fait est requis par
la théorie. Au contraire, le champ électrique est une quantité réelle (car mesurable).

On appelle 'onde qui décrit I'état d’'une particule a un instant donné, la «fonction d’'onde». Typiquement elle
est indiquée par 1 (r) et prend des valeurs complexes. On I'appelle parfois «xamplitude de probabilité».

La probabilité de trouver la particule dans un volume infinitésimal dV autour de la position r a un instant

donné, est donc
dP(r) = |4 (r)[*dV
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Ou W\ = Y"1 es le module carré de la valeur complexe de la fonction d’onde. C’est la régle de Born.



Interprétation orthodoxe de la Physigue Quantique

La fonction d’onde contient le maximum d’information physique sur la particule. La régle de Born nous dit
gu’en Physique Quantique la position des particules n’est pas completement déterminée, contrairement a la
physique classique ou on décrit la trajectoire d’un point matériel. Cette idée est bien entendu liée au principe
d’incertitude de Heisenberg.

Plusieurs questions fondamentales restent ouvertes.
Quelle est la loi qui détermine la forme de la fonction d’'onde pour un systeme donné?

Puisque en nature les objets bougent avec le temps, comment le temps entre-t-il dans la théorie de la
Physique Quantique?

Si la position n’est pas déterminée, que se passe-t-il lorsqu’on mesure la position d’'une particule?

Comment on introduit les autres quantités physiques dans cette description? Par exemple I'impulsion, le
moment cinétique, etc?

Comment décrit-on un systeme formé de plusieurs particules? Quelle sera 'amplitude de probabilité pour
chaque particule?



La particule libre en une dimension

Si on se restreint a une dimension x, la fonction d’onde est liée a la probabilité de mesurer la particule dans
une intervalle infinitésimale dx selon

— 2
dP(z) = [ (z)|"dx
La probabilité de trouver la particule dans une intervalle entre x=a et x=b est donc
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La probabilité de trouver la particule tout court, doit étre 1. Donc:
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La fonction d’onde doit obéir a cette condition. On dit qu’elle est normée. a b



La valeur moyenne d’une mesure

Les lois élémentaires de la probabilité posent que la valeur moyenne d’'une quantité x, caractérisée par une
certaine distribution de probabilité p(x), se calcule en faisant la somme des valeurs possibles multipliées par
les probabilités respectives. Pour la position x de la particule nous pouvons donc écrire
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On appelle cette quantité «valeur moyenne» ou «espérance» de x (en anglais c’est «expectation value»)

Si on a une quantité physiqgue f(x) qui dépend de la position de la particule, on calcule sa moyenne comme

ta) = [ s@lwePas

Mais comment doit-on interpréter cette valeur moyenne? Linterprétation correcte est la suivante. Si on
considere beaucoup de particules (indépendantes I'une de l'autre), chacune décrite par la méme fonction
d’onde v (x), et on mesure la position de chaque particule, on obtiendra un ensemble de valeurs dont la

valeur moyenne sera donnée par (z)



Exemple: le paguet d’'onde Gaussien

Pr(x)

Un état tres commun pour une particule est le paquet d’onde Gaussien
2
—ax
b(x) = Ae
Pour calculer le facteur A, on impose la norme de la fonction d’'onde
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En calculant I'intégrale Gaussienne, on a finalement
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On peut calculer aussi la moyenne de x, qui vaut zéro car on integre une fonction impaire, et la variance qui
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La particule dans un puits de potentiel infini

On considere une particule confinée dans une région de
I'espace qui va de x=0 a x=L. On peut s’imaginer que ce
confinement est produit par deux barriéres impénétrables. Ces
barrieres sont décrites mathématiquement par un puits de
potentiel avec barrieres de hauteur infinie.

Dans la région du puits la particule se comporte comme une
particule libre. Si c’était une particule classique, elle pourrait
avoir une vitesse arbitraire.

En physique quantique, le mouvement a l'intérieur du puits
serait donc décrit par 'onde de de Broglie

Y(x) =Mk =p/h
La phase ¢ arbitraire permet d’exprimer la fct d'onde comme

Y(x) = Asin(kz) + B cos(kx)

On trouvera ce résultat par la suite en résolvant I'équation de
Schrodinger.
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La particule dans un puits de potentiel infini

Comment choisi-t-on A et B? Si les barrieres sont impénétrables, il faut que |la probabilité de trouver la
particule a 'extérieur du puits soit zéro. La fonction d’onde doit donc étre zéro pour x<0 et x>L.

La fonction d’onde en Physique Quantique doit étre continue. C’est une propriété qui découle de I'équation
de Schrodinger qu’on verra par la suite. Il faut donc que la fonction d’onde s’annule aussi en x=0 et x=L. On
en déduit qu’il faut poser B=0. On a donc

Y(x) = Asin(kx) k=p/h=21/)\

Pour la méme raison, la fonction d’'onde doit s’annuler aussi en x=L. Ceci n’est possible que pour des valeurs
discretes de la longueur d’'onde de de Broglie A. La condition sur la longueur d’onde est
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Les fonctions d’onde des différents états possibles sont donc (apres avoir calculé la norme)
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La particule dans un puits de potentiel infini

Dans la figure, pour chaque valeur de n la fonction est dessinée déplacée vers le haut, pour pouvoir les
distinguer. A droite on a la densité de probabilité correspondante.

On remarque que pour n=1 la probabilité de trouver la particule n’est zéro qu’aux bords du puits.

Pour n>1, on a aussi des points a l'intérieur du puits ou la particule ne peut pas se trouver! Un tel
comportement est typiqgue du comportement ondulatoire et n’a pas d’analogue en physique classique.

On appelle n le «<nombre quantique». Il caractérise les différents états possibles de la particule.



La particule dans un puits de potentiel infini

A partir de la condition sur la longueur d’onde, on peut déduire une
condition sur I'impulsion, qui est aussi quantifiée
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De la quantification de I'impulsion on peut déduire celle de I'énergie 5
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L'énergie d’une particule confinée dans I’espace est donc quantifiée!

'état de plus basse énergie, avec n=1, s’appelle en Physique Quantique «état fondamental» («ground state» en
anglais). Pour une particule confinée, son énergie est E;>0. En Physique Quantique, contrairement a la physique
classique, une particule confinée n’est jamais au repos!

On a maintenant une base pour expliquer la quantification de I'énergie. Remarquez que les valeurs discréetes
n‘ont pas toutes le méme espacement. C’est le cas en général. Le seul systeme avec énergies également
espacées est 'oscillateur harmonique comme on le verra plus loin.



Questions ouvertes

Quelle est la loi qui régit le comportement de |la fonction d’onde? Et quelle est la loi qui régit I'évolution dans
le temps de la fonction d’onde?

Comment interpréter la regle de Born? Que se passe-t-il si je fais deux fois de suite la mesure de la position
sur la méme particule? La fonction d’'onde change-t-elle comme conséquence d’une mesure? Si oui, que
devient-elle?

Comment on décrit les autres quantités physiques, telles que impulsion, moment cinétique, etc.? Et comment
la théorie décrit-elle le processus de mesure de ces quantités?

Comment on généralise la théorie au cas avec plusieurs particules en interaction?
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